
Variance in Rust
Covariant, Contravariant, and Invariant

David Wallace Croft, M.Sc.

Presented to the
Indy Rust User Meetup

2024 Jul 03 Wed

© 2024 CroftSoft Inc

Liskov Substitution
● In Java, subclass Car extends superclass Vehicle
● Liskov Substitution Principle

○ Can use a subtype in place of the type

final Vehicle vehicle = new Car();
vehicle.setVelocity(0);

static void stop(Vehicle v) { v.setVelocity(0); }
final Boat boat = new Boat();
stop(boat);

© 2024 CroftSoft Inc

Inheritance in Rust
● No class inheritance in Rust

○ No subtypes for enums, structs, and unions
○ Not allowed: struct Car extends Vehicle { ... }

● Has something like Java interface inheritance
○ pub trait Car: Vehicle { ... }

● Rust generic types can be "bounded" by traits
○ struct Lease<V: Vehicle>(V);

● Rust lifetimes can have bounds
○ 'b: 'a means 'b lives as least as long as 'a

© 2024 CroftSoft Inc

Trait Bounds
● Car is a subtype of Vehicle

© 2024 CroftSoft Inc

pub trait Vehicle {

 fn set_velocity(

 &mut self,

 velocity: f64,

);

}

pub trait Car: Vehicle {

 fn get_angle(&self) -> f64;

 fn set_angle(

 &mut self,

 angle: f64,

);

}

Enum Variants
● Enumerated type values are called "variants"

○ Not to be confused with "variance"

enum MyEnum {

 MyFirstVariant,

 MySecondVariant,

 MyThirdVariant,

}

© 2024 CroftSoft Inc

Unsafe Invariant
● Property that must be upheld for unsafe code

○ A promise that the compiler cannot verify
○ Different from the "invariant" for variance

© 2024 CroftSoft Inc

Non-Comp Sci Definitions
● variance: difference, variation (Latin)
● covariant: two or more things vary together

○ co-: together (Latin)
● contravariant: has an obscure definition in math

○ All of these terms have math definitions
○ contra-: against (Latin)

● invariant: never changing
○ in-: not (Latin)

© 2024 CroftSoft Inc

Computer Science Definitions
● Examples of each of these in following slides

● covariant
○ A subtype can be used in place of a type

● contravariant
○ A supertype can be used in place of a type

● invariant
○ Only the type itself can be used

© 2024 CroftSoft Inc

Covariant
● Can use a subtype in place of the type

© 2024 CroftSoft Inc

pub fn stop_vehicle<V: Vehicle>(

 vehicle: &mut V

) {

 vehicle.set_velocity(0.);

}

pub fn stop_car<C: Car>(

 car: &mut C

) {

 stop_vehicle(car);

}

Covariance for Lifetimes
● Can use a subtype in place of the type
● lifetime 'static is a subtype of lifetime 'a

○ 'static can be used wherever 'a is used
● For 'b: 'a, 'b lives at least as long as 'a

○ So 'b is a subtype of 'a

© 2024 CroftSoft Inc

Contravariant
● Can use a supertype in place of the type

○ Only works for fn(T) -> ()

© 2024 CroftSoft Inc

pub fn stop<C: Car>(

 c: &mut C,

 f: fn(c: &mut C),

) { f(c); }

pub fn stop_vehicle<V: Vehicle>(

 vehicle: &mut V

) { vehicle.set_velocity(0.); }

fn test_stop()

{

 let mut car_imp = CarImp {

 velocity: 1.,

 };

 stop(&mut car_imp, stop_vehicle);

 assert_eq!(car_imp.velocity, 0.);

}

Contravariance for Lifetimes
● If T is &'static str, &'a str is a supertype

© 2024 CroftSoft Inc

pub fn print(

 s: &'static str,

 f: fn(s: &'static str),

) { f(s); }

pub fn print_non_static_str(

 s: &str

) { print!("{s}"); }

#[test]

fn test_print()

{

 print(

 "static",

 print_non_static_str);

}

Invariant
● Cannot use a subtype or supertype for &mut T

○ The code on the right does not compile

© 2024 CroftSoft Inc

pub fn add_str<'a>(

 v: &mut Vec<&'a str>,

 s: &'a str,

) { v.push(s); }

fn test_add_str_0() {

 let mut v: Vec<&str> = Vec::new();

 let s = String::new();

 add_str(&mut v, &s);

 assert_eq!(v.len(), 1);

}

fn test_add_str_1() {

 let mut v: Vec<&'static str> = Vec::new();

 let s = String::new();

 // Does not compile

 add_str(&mut v, &s);

 assert_eq!(v.len(), 1);

}

Links
● "Subtyping and Variance", The Rust Reference,

https://doc.rust-lang.org/reference/subtyping.html
● "Subtyping and Variance", The Rustonomicon,

https://doc.rust-lang.org/nomicon/subtyping.html
● Jon Gjengset, "Rust for Rustaceans", pp15-16,

https://rust-for-rustaceans.com/
● Jon Gjengset, "Crust of Rust: Subtyping and

Variance",
https://youtu.be/iVYWDIW71jk?si=ty5p8EdKUD0
XgWaG

© 2024 CroftSoft Inc

https://doc.rust-lang.org/reference/subtyping.html
https://doc.rust-lang.org/nomicon/subtyping.html
https://rust-for-rustaceans.com/
https://youtu.be/iVYWDIW71jk?si=ty5p8EdKUD0XgWaG
https://youtu.be/iVYWDIW71jk?si=ty5p8EdKUD0XgWaG

Presenter
● David Wallace Croft, M.Sc.

○ https://www.CroftSoft.com/people/david/
● Organizer of the Dallas Rust User Meetup

○ https://www.DallasRust.org/
● Open source Rust projects

○ Animated interactive games and simulations that run in the
browser using WebAssembly (Wasm)

○ Single page applications (SPAs) with static pre-rendering
and client-side hydration using Dioxus

○ Serverless functions using Amazon Web Services (AWS)
Lambda and Fermyon Spin

○ https://www.CroftSoft.com/people/david/research/rust-wasm/

© 2024 CroftSoft Inc

https://www.croftsoft.com/people/david/
https://www.dallasrust.org/
https://www.croftsoft.com/people/david/research/rust-wasm/

Licenses
● Slides and code are © 2024 CroftSoft Inc
● This slide presentation is available under the

terms of the Creative Commons Attribution 4.0
International License
https://creativecommons.org/licenses/by/4.0/

● The code is available under the terms of the open
source MIT License
https://opensource.org/license/mit/

© 2024 CroftSoft Inc

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/license/mit/

