
Typestate Pattern in Rust
With Fluent Constructor and State Machine Examples

David Wallace Croft, M.Sc.

Presented to the
Indy Rust User Meetup

2024 Sep 04 Wed

© 2024 CroftSoft Inc



Design Patterns
● Borrowed from a book on building architecture
● Adopted by software architects

○ Gamma, et al., "Design Patterns", 1994
○ Known as the "Gang of Four Book"

● A reusable pattern that fits a type of situation
○ Problem and solution
○ Customized as needed

● Quickly communicate design ideas
○ Using just the name of the pattern

© 2024 CroftSoft Inc



Antipatterns
● Sub-optimal design patterns

○ Used frequently enough to be named
● Should generally be avoided

○ Disadvantages outweigh the advantages

© 2024 CroftSoft Inc



Builder Pattern
● Problem

○ Make a recipe to assemble a complex object
○ Enable swapping out implementations

● Solution
○ Client instantiates a ConcreteBuilder
○ Client passes ConcreteBuilder to Director
○ Director operates on an AbstractBuilder
○ Client retrieves Product from ConcreteBuilder

© 2024 CroftSoft Inc



Named Arguments
● A potential run-time error

○ my_function(height, width)
○ my_function(width, height)

● Named arguments (a.k.a. named parameters)
○ my_function(width => width, height => height)

● Languages with named arguments
○ Ada, C#, Fortran, Kotlin, Python, Ruby, [...]

● Rust
○ https://github.com/rust-lang/rfcs/issues/323

© 2024 CroftSoft Inc

https://github.com/rust-lang/rfcs/issues/323


Builder Antipattern
● Work-around for a lack of named arguments

○ let p = Product::builder().a(a).b(b).build();
● Different from Gang of Four book definition

○ To distinguish, I call it a "Fluent Constructor"
● Easily misused resulting in run-time errors

○ Building before all required arguments given
○ Reusing after build when not designed for it
○ Permits invalid argument combinations
○ Breaks when arguments added to constructor

© 2024 CroftSoft Inc



Typestate Pattern
● Problem

○ Permit state transitions only when valid
○ Enforce using static compile-time checks

● Solution
○ Represent the states using typestates (structs)
○ State transition methods are typestate-specific
○ State transition methods consume self

© 2024 CroftSoft Inc



Typestate Fluent Constructor
● A Fluent Constructor that cannot be misused

○ Based on the Typestate Pattern
○ Also called a "Strict Builder"

● Compile-time errors instead of run-time errors
○ Cannot build until all required values provided
○ Prevents invalid argument combinations
○ New arguments require code updates
○ Initial arguments determine next ones allowed
○ Prevents reuse after build

© 2024 CroftSoft Inc



Widget Fluent Constructor

© 2024 CroftSoft Inc



Player Character Fluent Constructor

© 2024 CroftSoft Inc



Example Code
● Open source example code on GitHub

○ https://github.com/david-wallace-croft/pattern-typestate

● fluent_constructor_0
○ A basic typestate fluent constructor

● fluent_constructor_1
○ Specifying the state using a generic and phantom data

● fluent_constructor_2
○ A typestate fluent constructor for an external struct

● fluent_constructor_3
○ Diverging and converging chain method paths

© 2024 CroftSoft Inc

https://github.com/david-wallace-croft/pattern-typestate


State Machine

© 2024 CroftSoft Inc



Typestate State Machine
● State Machine

○ Changes system state upon event triggers
○ Only implements valid state transitions

● How to use asynchronous events with Typestate? 
○ Event handling dependent on state value
○ But the typestate is a type, not a value

● Store the typestate in an enum variant field
○ Extract the typestate in an enum matching arm

© 2024 CroftSoft Inc



Example Code
● Open source example code on GitHub

○ https://github.com/david-wallace-croft/pattern-typestate

● state_machine_0
○ Operates on data inside itself

● state_machine_1
○ Operates on data outside itself

© 2024 CroftSoft Inc

https://github.com/david-wallace-croft/pattern-typestate


Links
● Cliff L. Biffle, "The Typestate Pattern in Rust", 

2019-06-05, https://cliffle.com/blog/rust-typestate/
● Eric Smith, "Game Development with Rust and 

WebAssembly", 2022 Apr, 
https://www.packtpub.com/en-us/product/game-devel
opment-with-rust-and-webassembly-9781801070973/

● Gamma, et al., "Design Patterns: Elements of 
Reusable Object-Oriented Software" (1E), 
Addison-Wesley Professional, 1994.
https://en.wikipedia.org/wiki/Design_Patterns

© 2024 CroftSoft Inc

https://cliffle.com/blog/rust-typestate/
https://www.packtpub.com/en-us/product/game-development-with-rust-and-webassembly-9781801070973/
https://www.packtpub.com/en-us/product/game-development-with-rust-and-webassembly-9781801070973/
https://en.wikipedia.org/wiki/Design_Patterns


Presenter
● David Wallace Croft, M.Sc.

○ https://www.CroftSoft.com/people/david/
● Organizer of the Dallas Rust User Meetup

○ https://www.DallasRust.org/
● Open source Rust projects

○ Animated interactive games and simulations that run in the 
browser using WebAssembly (Wasm)

○ Single page applications (SPAs) with static pre-rendering 
and client-side hydration using Dioxus

○ Serverless functions using Amazon Web Services (AWS) 
Lambda and Fermyon Spin

○ https://www.CroftSoft.com/people/david/research/rust-wasm/

© 2024 CroftSoft Inc

https://www.croftsoft.com/people/david/
https://www.dallasrust.org/
https://www.croftsoft.com/people/david/research/rust-wasm/


Licenses
● Slides and code are © 2024 CroftSoft Inc
● This slide presentation is available under the 

terms of the Creative Commons Attribution 4.0 
International License
https://creativecommons.org/licenses/by/4.0/

● The code is available under the terms of the open 
source MIT License
https://opensource.org/license/mit/

© 2024 CroftSoft Inc

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/license/mit/

