
Rust / Wasm
On Serverless & Frontend

David Wallace Croft, M.Sc.

Presented to the
Rust Miami Meetup

2025 Jan 09 Thu

© 2025 CroftSoft Inc



WebAssembly
● WebAssembly (Wasm)
● Like Java bytecode "Write once, run anywhere"

○ But w/o intellectual property entanglements
● Wasm is one of the browser-supported languages

○ CSS, HTML, JavaScript, WebGL / GLSL
● Security sandbox

○ Limits on what it is allowed to do
○ When running in your browser

© 2025 CroftSoft Inc



Rust
● Static typing like Java and TypeScript

○ Ada motto: "In strong typing we trust"
● High performance like C and C++

○ High performance = low electricity costs
● Memory safe like Go and Java

○ But without garbage collection spikes
● Wasm can be compiled from many languages

○ But Rust is best supported

© 2025 CroftSoft Inc



Rust / Wasm Examples
● Java applets no longer supported in the browser
● Rewrote my Java applets using Rust / Wasm
● https://www.gamespawn.com/arcade/

● Bevy Game Engine
● Compiles Rust to Wasm for 3D in the browser
● https://bevyengine.org/examples/
● https://bevyengine.org/examples-webgpu/

© 2025 CroftSoft Inc

https://www.gamespawn.com/arcade/
https://bevyengine.org/examples/
https://bevyengine.org/examples-webgpu/


Wasm Runtime
● Java jumps from browser applets to servlets
● JavaScript jumps from browser to Node.js
● Wasm jumps from browser to Wasm runtime

○ WasmEdge, Wasmer, Wasmtime, & more
● Security sandbox

○ Restrictions on transitive dependencies
● WebAssembly System Interface (WASI)

○ CLI, Clocks, Files, HTTP, Random, Sockets

© 2025 CroftSoft Inc



Serverless
● No dedicated servers for the backend

○ Developers, not system administrators
● Server rented just while function executing

○ Charged by the millisecond
● Can have lengthy cold start times

○ 200+ milliseconds to seconds
○ Depending on language and size
○ Mitigation techniques

© 2025 CroftSoft Inc



Fermyon Spin
● Virtual Machines to Containers to Serverless
● The next jump is to Serverless Wasm

● Fermyon Spin is Serverless Wasm
● Fast cold startups in less than 2 milliseconds
● Can run on top of Kubernetes
● Permits creating Wasms from other Wasms
● Transitive dependency security constraints
● Recently released 3.0

© 2025 CroftSoft Inc



Single Page Application
● SPAs download a single index.html file

○ To bootstrap the JavaScript code
○ Updates Document Object Model (DOM)

● Renders the application web pages client-side
○ No download delays when switching pages
○ Everything just seems to pop instantly

● Served from a Content Delivery Network (CDN)
○ No server-side rendering = no servers
○ No servers = reduced costs

© 2025 CroftSoft Inc



Pre-rendering & Hydration
● Web spiders search for text content in HTML
● No text content in the HTML for an SPA

○ Needs to run JavaScript to render content
● Static pre-rendering adds content to the HTML

○ Added before upload to the CDN
○ Good for bookmarked pages
○ Good for Search Engine Optimization (SEO)

● Hydration wires up JavaScript to pre-rendered

© 2025 CroftSoft Inc



Jamstack
● JavaScript, APIs, and Markup (JAM)

○ J = SPA code in JavaScript or Wasm
○ A = Only data, not pages, to and from server
○ M = Static pre-rendering for SEO

● Static Site Generator (SSG)
○ Pre-renders HTML with content from markup
○ Markup can be Markdown or another language

● Jamstack uses SSG with data transfers via APIs

© 2025 CroftSoft Inc



Dioxus
● SPA library for the Rust programming language

○ If you know React, you already know Dioxus
● Compiles to Wasm

○ Runs in all major browsers
○ Also desktop and mobile

● Recently released version 0.6
○ Improved support for SSG
○ Static pre-rendering and client-side hydration

© 2025 CroftSoft Inc



Dioxus Examples
● All examples use static prerendering for SEO
● Dallas Rust

○ Mouse wheel input drives animation
○ https://www.DallasRust.org/

● Dioxus Prototype
○ Recently updated from Dioxus v0.4 to v0.6
○ Referenced tutorial not yet updated
○ https://www.persentia.com/

● Organs for Life
○ https://www.OrgansFor.Life/

© 2025 CroftSoft Inc

https://www.dallasrust.org/
https://www.persentia.com/
https://www.organsfor.life/


Language Choice = Mobility

© 2025 CroftSoft Inc



Rust / Wasm = Mobility
● Coding language choice limits job mobility

○ A bank with its own backend language
○ Backend vs frontend vs scripting
○ Platform-specific programming languages

● JavaScript / TypeScript (JS / TS) = Fullstack
○ Frontend, backend, and scripting

● Rust / Wasm is fullstack like JS / TS
○ Plus low level and performance applications
○ AI, Data, Embedded, Graphics, Systems

© 2025 CroftSoft Inc



Advent of Spin
● Coding challenge hosted by Fermyon
● Uses Fermyon Spin for serverless Wasm
● Challenges teach you incrementally
● 2024 is my second year to participate

○ https://github.com/david-wallace-croft/advent-of-spin

© 2025 CroftSoft Inc

https://github.com/david-wallace-croft/advent-of-spin


Challenge 1
● Frontend data input form in any language
● Backend Wasm serverless from any language
● I choose Rust / Wasm for both
● Dioxus for my frontend Jamstack SPA

● Switched from RustRover back to VS Code
● My first time to use GitHub Copilot
● Used Amazon CodeWhisperer previous year

© 2025 CroftSoft Inc



Challenge 1 Solution Demo
● https://challenge1-fbgn5xod.fermyon.app/

© 2025 CroftSoft Inc

https://challenge1-fbgn5xod.fermyon.app/


Challenge 1 Solution Code
● https://github.com/david-wallace-croft/advent-of-s

pin/tree/main/2024/challenge1
● README.md
● spin.toml, Cargo.toml, lib.rs
● test.hurl, submit.hurl
● Dioxus.toml, Cargo.toml, main.rs
● assets/, components/, data/

© 2025 CroftSoft Inc

https://github.com/david-wallace-croft/advent-of-spin/tree/main/2024/challenge1
https://github.com/david-wallace-croft/advent-of-spin/tree/main/2024/challenge1


Challenge 2
● Compile Wasm from JavaScript or TypeScript
● Use the Wasm as a dependency library
● In a serverless Wasm compiled from Rust

© 2025 CroftSoft Inc



Challenge 2 Solution Demo
● https://challenge2-xqnag9fm.fermyon.app/naught

y-or-nice.html

© 2025 CroftSoft Inc

https://challenge2-xqnag9fm.fermyon.app/naughty-or-nice.html
https://challenge2-xqnag9fm.fermyon.app/naughty-or-nice.html


Challenge 2 Solution Code
● https://github.com/david-wallace-croft/advent-of-s

pin/tree/main/2024/challenge2
● README.md
● calculator.js, component.wit, package.json
● .wit/, spin.toml, bindings/
● lib.rs

© 2025 CroftSoft Inc

https://github.com/david-wallace-croft/advent-of-spin/tree/main/2024/challenge2
https://github.com/david-wallace-croft/advent-of-spin/tree/main/2024/challenge2


Challenge 3
● Compile Wasm from Python
● I gave up on this one after too much time on it
● componentize-py might be buggy on Windows

● But I learned a lot from the documentation
● The WebAssembly Component Model

○ https://component-model.bytecodealliance.org/

© 2025 CroftSoft Inc

https://component-model.bytecodealliance.org/


Future
● WebAssembly System Interface (WASI)

○ https://wasi.dev/
● Warg

○ https://warg.io/
● OAuth 2.0 / OpenID Connect (OIDC)

○ Authentication between Dioxus and Spin

© 2025 CroftSoft Inc

https://wasi.dev/
https://warg.io/


Links
● Fermyon Spin: Serverless WebAssembly (Wasm)

○ https://www.fermyon.com/spin
● Dioxus: Rust-to-Wasm user interface library

○ https://dioxuslabs.com/
● Rust: high performance memory safe language

○ https://www.rust-lang.org/
● WebAssembly: bytecode for browser and server

○ https://webassembly.org/
● Jamstack: JavaScript, APIs, Markup architecture

○ https://jamstack.org/

© 2025 CroftSoft Inc

https://www.fermyon.com/spin
https://dioxuslabs.com/
https://www.rust-lang.org/
https://webassembly.org/
https://jamstack.org/


Presenter
● David Wallace Croft, M.Sc.

○ https://www.CroftSoft.com/people/david/
● Organizer of the Dallas Rust User Meetup

○ https://www.DallasRust.org/
● Open source Rust projects

○ Animated interactive games and simulations that run in the 
browser using WebAssembly (Wasm)

○ Single page applications (SPAs) with static pre-rendering 
and client-side hydration using Dioxus

○ Serverless functions using Amazon Web Services (AWS) 
Lambda and Fermyon Spin

○ https://www.CroftSoft.com/people/david/research/rust-wasm/

© 2024 CroftSoft Inc

https://www.croftsoft.com/people/david/
https://www.dallasrust.org/
https://www.croftsoft.com/people/david/research/rust-wasm/


Licenses
● Slides and code are © 2025 CroftSoft Inc
● This slide presentation is available under the 

terms of the Creative Commons Attribution 4.0 
International License
https://creativecommons.org/licenses/by/4.0/

● The code is available under the terms of the open 
source MIT License
https://opensource.org/license/mit/

© 2025 CroftSoft Inc

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/license/mit/

